93.复原IP地址
力扣题目链接
根据题目的意思是割3刀使所有部分是一个正确的ip地址所以除了判断有效的函数不同其他基本一致,但是终止条件式切3刀
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
| class Solution { private: vector<string> result; void backtracking(string& s, int startIndex, int pointNum) { if (pointNum == 3) { if (isValid(s, startIndex, s.size() - 1)) { result.push_back(s); } return; } for (int i = startIndex; i < s.size(); i++) { if (isValid(s, startIndex, i)) { s.insert(s.begin() + i + 1 , '.'); pointNum++; backtracking(s, i + 2, pointNum); pointNum--; s.erase(s.begin() + i + 1); } else break; } } bool isValid(const string& s, int start, int end) { if (start > end) { return false; } if (s[start] == '0' && start != end) { return false; } int num = 0; for (int i = start; i <= end; i++) { if (s[i] > '9' || s[i] < '0') { return false; } num = num * 10 + (s[i] - '0'); if (num > 255) { return false; } } return true; } public: vector<string> restoreIpAddresses(string s) { result.clear(); if (s.size() < 4 || s.size() > 12) return result; backtracking(s, 0, 0); return result; } };
|
- 时间复杂度: O(3^4),IP地址最多包含4个数字,每个数字最多有3种可能的分割方式,则搜索树的最大深度为4,每个节点最多有3个子节点。
注意这个时间复杂度,这是递归方法的时间复杂度计算,就是针对于每个数字可能得情况我们进行遍历所以取得
78.子集
力扣题目链接
如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!
你看对弈每一个节点都是子集并不是只存储最后的结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| class Solution { private: vector<vector<int>> result; vector<int> path; void backtracking(vector<int>& nums, int startIndex) { result.push_back(path); if (startIndex >= nums.size()) { return; } for (int i = startIndex; i < nums.size(); i++) { path.push_back(nums[i]); backtracking(nums, i + 1); path.pop_back(); } } public: vector<vector<int>> subsets(vector<int>& nums) { result.clear(); path.clear(); backtracking(nums, 0); return result; } };
|
90.子集II
力扣题目链接
在78题的基础上利用use去重
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| class Solution { private: vector<vector<int>> result; vector<int> path; void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) { result.push_back(path); for (int i = startIndex; i < nums.size(); i++) { if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) { continue; } path.push_back(nums[i]); used[i] = true; backtracking(nums, i + 1, used); used[i] = false; path.pop_back(); } }
public: vector<vector<int>> subsetsWithDup(vector<int>& nums) { result.clear(); path.clear(); vector<bool> used(nums.size(), false); sort(nums.begin(), nums.end()); backtracking(nums, 0, used); return result; } };
|
当然也可以使用set来去除重复数据。
491.递增子序列
力扣题目链接
这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。
这又是子集,又是去重,是不是不由自主的想起了刚刚讲过的90.子集II (opens new window)。
就是因为太像了,更要注意差别所在,要不就掉坑里了!
在90.子集II (opens new window)中我们是通过排序,再加一个标记数组来达到去重的目的。
而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。
所以不能使用之前的去重逻辑!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
| class Solution { private: vector<vector<int>> result; vector<int> path; void backtracking(vector<int>& nums, int startIndex) { if (path.size() > 1) { result.push_back(path); } unordered_set<int> uset; for (int i = startIndex; i < nums.size(); i++) { if ((!path.empty() && nums[i] < path.back()) || uset.find(nums[i]) != uset.end()) { continue; } uset.insert(nums[i]); path.push_back(nums[i]); backtracking(nums, i + 1); path.pop_back(); } } public: vector<vector<int>> findSubsequences(vector<int>& nums) { result.clear(); path.clear(); backtracking(nums, 0); return result; } };
|
46.全排列
力扣题目链接
因为是排列问题所以也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方所以我们也就不需要使用startIndex
但是但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| class Solution { public: vector<vector<int>> result; vector<int> path; void backtracking (vector<int>& nums, vector<bool>& used) { if (path.size() == nums.size()) { result.push_back(path); return; } for (int i = 0; i < nums.size(); i++) { if (used[i] == true) continue; used[i] = true; path.push_back(nums[i]); backtracking(nums, used); path.pop_back(); used[i] = false; } } vector<vector<int>> permute(vector<int>& nums) { result.clear(); path.clear(); vector<bool> used(nums.size(), false); backtracking(nums, used); return result; } };
|
47.全排列 II
力扣题目链接
这道题目和46.全排列 (opens new window)的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
| class Solution { private: vector<vector<int>> result; vector<int> path; void backtracking (vector<int>& nums, vector<bool>& used) { if (path.size() == nums.size()) { result.push_back(path); return; } for (int i = 0; i < nums.size(); i++) { if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) { continue; } if (used[i] == false) { used[i] = true; path.push_back(nums[i]); backtracking(nums, used); path.pop_back(); used[i] = false; } } } public: vector<vector<int>> permuteUnique(vector<int>& nums) { result.clear(); path.clear(); sort(nums.begin(), nums.end()); vector<bool> used(nums.size(), false); backtracking(nums, used); return result; } };
|