贪心算法1

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

这么说有点抽象,来举一个例子:

例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?

指定每次拿最大的,最终结果就是拿走最大数额的钱。

每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

贪心的主要思路就是通过手动模拟

455.分发饼干

力扣题目链接

每个孩子给一块饼干,并满足他的胃口,所以我们应该对排序完的孩子和饼干,每次都把最小的且能满足其胃口额度饼干分给那个孩子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 版本一
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int index = s.size() - 1; // 饼干数组的下标
int result = 0;
for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
result++;
index--;
}
}
return result;
}
};

376. 摆动序列

力扣题目链接

连续数字之间的差严格地在正数和负数之间交替,可以从原始序列中删除一些,所以我们的分析就是如何删除元素,图示举例我们删除元素删除单调的元素

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。然后我们要做的分析情况

  1. 情况一:上下坡中有平坡

    删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。

    峰值记录规则改为(preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)

  2. 情况二:数组首尾两端

    可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?

    之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。

    那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,如图:

    这样就解决了prediff 初始值的问题

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    // 版本一
    class Solution {
    public:
    int wiggleMaxLength(vector<int>& nums) {
    if (nums.size() <= 1) return nums.size();
    int curDiff = 0; // 当前一对差值
    int preDiff = 0; // 前一对差值
    int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值
    for (int i = 0; i < nums.size() - 1; i++) {
    curDiff = nums[i + 1] - nums[i];
    // 出现峰值
    if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
    result++;
    }
    preDiff = curDiff;
    }
    return result;
    }
    };
  3. 情况三:单调坡中有平坡

但是上述的代码并不能退解决单调坡上有平坡的图,因为我们在实时的更新我们的pre导致最后是0和上升。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
int curDiff = 0; // 当前一对差值
int preDiff = 0; // 前一对差值
int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值
for (int i = 0; i < nums.size() - 1; i++) {
curDiff = nums[i + 1] - nums[i];
// 出现峰值
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
}
}
return result;
}
};

53. 最大子序和

力扣题目链接

找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

从代码角度上来讲:遍历 nums,从头开始用 count 累积,如果 count 一旦加上 nums[i]变为负数,那么就应该从 nums[i+1]开始从 0 累积 count 了,因为已经变为负数的 count,只会拖累总和。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count;
}
if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
return result;
}
};

122.买卖股票的最佳时机 II

力扣题目链接

这道题目可能我们只会想,选一个低的买入,再选个高的卖,再选一个低的买入…..循环反复。

如果想到其实最终利润是可以分解的,那么本题就很容易了!

所以我们就可以计算每一天的利润,如果是负就不买这样

或者可以画一个图,我们只去上升部分在最低点买,最高点卖,总结出就是

1
2
3
4
5
6
7
8
9
10
class Solution {
public:
int maxProfit(vector<int>& prices) {
int result = 0;
for (int i = 1; i < prices.size(); i++) {
result += max(prices[i] - prices[i - 1], 0);
}
return result;
}
};

55. 跳跃游戏

力扣题目链接

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个位置。

所以我们的思路就是包括

比如我在位置0可以跳3步,那么我就要找保证位置0在内的0-3位置可以跳的最远的位置跳到那里去,然后继续计算,

1
2
3
4
5
6
7
8
9
10
11
12
class Solution {
public:
bool canJump(vector<int>& nums) {
int cover = 0;
if (nums.size() == 1) return true; // 只有一个元素,就是能达到
for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
cover = max(i + nums[i], cover);
if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
}
return false;
}
};

45.跳跃游戏 II

力扣题目链接

请你使用最少跳数调到目的地

本题要计算最少步数,那么就要想清楚什么时候步数才一定要加一呢?

贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最少步数。

思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。

所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!

这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int jump(vector<int>& nums) {
if (nums.size() == 1) return 0;
int curDistance = 0; // 当前覆盖最远距离下标
int ans = 0; // 记录走的最大步数
int nextDistance = 0; // 下一步覆盖最远距离下标
for (int i = 0; i < nums.size(); i++) {
nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖最远距离下标
if (i == curDistance) { // 遇到当前覆盖最远距离下标
ans++; // 需要走下一步
curDistance = nextDistance; // 更新当前覆盖最远距离下标(相当于加油了)
if (nextDistance >= nums.size() - 1) break; // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
}
}
return ans;
}
};

1005.K次取反后最大化的数组和

力扣题目链接

  • 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
  • 第二步:从前向后遍历,遇到负数将其变为正数,同时K–
  • 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
  • 第四步:求和
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
static bool cmp(int a, int b) {
return abs(a) > abs(b);
}
public:
int largestSumAfterKNegations(vector<int>& A, int K) {
sort(A.begin(), A.end(), cmp); // 第一步
for (int i = 0; i < A.size(); i++) { // 第二步
if (A[i] < 0 && K > 0) {
A[i] *= -1;
K--;
}
}
if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步
int result = 0;
for (int a : A) result += a; // 第四步
return result;
}
};

134. 加油站

力扣题目链接

在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

很容易想到如果油量加起来是负我们就重新开始,因为如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int curSum = 0;
int totalSum = 0;
int start = 0;
for (int i = 0; i < gas.size(); i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if (curSum < 0) { // 当前累加rest[i]和 curSum一旦小于0
start = i + 1; // 起始位置更新为i+1
curSum = 0; // curSum从0开始
}
}
if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
return start;
}
};

135. 分发糖果

力扣题目链接

你需要按照以下要求,给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻两个孩子评分更高的孩子会获得更多的糖果。

image-20240221153953778

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼

那么遍历是用从后遍历还是从前遍历呢

如果左孩子比右孩子比较,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
int candy(vector<int>& ratings) {
vector<int> candyVec(ratings.size(), 1);
// 从前向后
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}
// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1] ) {
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
}
}
// 统计结果
int result = 0;
for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
return result;
}
};
Author

jzs

Posted on

2024-02-21

Updated on

2024-04-29

Licensed under

Comments